Negative modulation of NMDA receptor channel function by DREAM/calsenilin/KChIP3 provides neuroprotection?

نویسندگان

  • KeWei Wang
  • Yun Wang
چکیده

N-methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels highly permeable to calcium and essential to excitatory neurotransmission. The NMDARs have attracted much attention because of their role in synaptic plasticity and excitotoxicity. Evidence has recently accumulated that NMDARs are negatively regulated by intracellular calcium binding proteins. The calcium-dependent suppression of NMDAR function serves as a feedback mechanism capable of regulating subsequent Ca(2+) entry into the postsynaptic cell, and may offer an alternative approach to treating NMDAR-mediated excitotoxic injury. This short review summarizes the recent progress made in understanding the negative modulation of NMDAR function by DREAM/calsenilin/KChIP3, a neuronal calcium sensor (NCS) protein.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of calsenilin/DREAM/KChIP3 in contextual fear conditioning.

Potassium channel interacting proteins (KChIPs) are members of a family of calcium binding proteins that interact with Kv4 potassium (K(+)) channel primary subunits and also act as transcription factors. The Kv4 subunit is a primary K(+) channel pore-forming subunit, which contributes to the somatic and dendritic A-type currents throughout the nervous system. These A-type currents play a key ro...

متن کامل

Specific effects of KChIP3/calsenilin/DREAM, but not KChIPs 1, 2 and 4, on calcium signalling and regulated secretion in PC12 cells

The KChIPs (K+ channel-interacting proteins) are members of the NCS (neuronal calcium sensor) protein family of Ca2+-binding proteins. It is unclear to what extent the KChIPs have distinct functions although they all interact with Kv4 K+ channels. KChIP3 has also been shown to repress transcription of specific genes via binding to DRE (downstream regulatory element) motifs and all KChIPs may sh...

متن کامل

Neuronal vulnerability of CLN3 deletion to calcium-induced cytotoxicity is mediated by calsenilin.

Calsenilin/DREAM/KChIP3, a neuronal Ca(2+)-binding protein, has multifunctions in nucleus and cytosol. Here, we identified CLN3 as a calsenilin-binding partner whose mutation or deletion is observed in Batten disease. In vitro binding and immunoprecipitation assays show that calsenilin interacts with the C-terminal region of CLN3 and the increase of Ca(2+) concentration in vitro and in cells ca...

متن کامل

Palmitoylation of KChIP splicing variants is required for efficient cell surface expression of Kv4.3 channels.

The Ca(2+)-binding proteins KChIP1-4 (KChIP3 is also known as DREAM and calsenilin) act as auxiliary subunits for voltage-gated K(+) channels in the Kv4 family. Here we identify three splicing isoforms of rat KChIP2 with variable N-terminal peptides. The two longer isoforms, which contain the 32-amino acid peptide, produce larger increases in Kv4.3 protein level and current density and more eff...

متن کامل

Ca2+-sensitive transcriptional regulation: direct DNA interaction by DREAM.

Calcium is a major regulator of cell function, acting as a second messenger to relay signals from the cell surface to other parts of the cell. It plays an integral role in contraction of muscle cells and it regulates cell growth and proliferation, as well as cell death (1). The present review will discuss how Ca2+ mediates these functions through the regulation of gene expression. This can be a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2012